CROI 2024 Update: Co-Occurring Conditions

Raaka Kumbhakar, MD, MPH
Clinical Assistant Professor
Department of Medicine, Division of Allergy and Infectious Diseases
University of Washington

Last Updated: 3/19/24
Disclosures

No conflicts of interests or relationships to disclose
Funding for this presentation was made possible by U1OHA29296 from the Human Resources and Services Administration HIV/AIDS Bureau. The views expressed do not necessarily reflect the official policies of the Department of Health and Human Services nor does mention of trade names, commercial practices, or organizations imply endorsement by the U.S. Government. Any trade/brand names for products mentioned during this presentation are for training and identification purposes only.
Data in this presentation offer a limited perspective of how systemic, social, and economic factors impact health. We recognize that racism, not race, creates and perpetuates health disparities.

To Learn More:
https://www.cdc.gov/minorityhealth/racism-disparities
CROI Updates: Co-Occurring Conditions

• Updates in anal cancer screening strategies

• Review updates in metabolic complications of HIV
 o Use of semaglutide

• Updates in HBV vaccination
 o BEe-HIVe Arm A results
Anal Dysplasia Screening
Anal Cancer in PWH

- Incidence of anal cancer is high among PWH; particularly among MSM

- ANCHOR: Treating anal HSIL reduces incidence of anal cancer (57% reduction)

- HRA (high resolution anoscopy) is gold standard for HSIL detection….…..but availability is limited

- Need practical strategies to approach anal cancer screening in PWH
 - Prioritization of referrals by demographics, low CD4 nadir, cytology/high risk HPV (HR-HPV)
180 MSM LWH had anal cytology, anal HPV, and HRA collected on same day

<table>
<thead>
<tr>
<th></th>
<th>Median (±SE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>47 (±10.7)</td>
</tr>
<tr>
<td>CD4 nadir (cells/uL)</td>
<td>350 (±241)</td>
</tr>
<tr>
<td>Current CD4 (cells/uL)</td>
<td>800 (±272)</td>
</tr>
<tr>
<td>CD4/CD8</td>
<td>1.03 (±0.39)</td>
</tr>
<tr>
<td>HIV RNA (copies/mL)</td>
<td><37</td>
</tr>
</tbody>
</table>

Results

<table>
<thead>
<tr>
<th>Cytology</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>NILM</td>
<td>10%</td>
</tr>
<tr>
<td>ASC-US</td>
<td>14%</td>
</tr>
<tr>
<td>LSIL</td>
<td>69%</td>
</tr>
<tr>
<td>ASC-H</td>
<td>5%</td>
</tr>
<tr>
<td>HSIL</td>
<td>2%</td>
</tr>
</tbody>
</table>

HR-HPV*

<table>
<thead>
<tr>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>75%</td>
</tr>
</tbody>
</table>

HRA

<table>
<thead>
<tr>
<th>HSIL</th>
</tr>
</thead>
<tbody>
<tr>
<td>43%</td>
</tr>
</tbody>
</table>

*Of HR-HPV, 54% HPV-16
Results

Cavallari et al. CROI 2024
CD4 Nadir and anal cancer risk

- PWH with nadir CD4 <200 had highest anal cancer risk (aIRR 29 v nadir > 350)

- PWH with nadir CD4 > 350 with similar risk as compared to general population

- Age, MSM, and nadir CD4 count strongest association w/anal cancer risk in PWH

Figure 2. Risk factors for anal cancer in the multivariable model.

<table>
<thead>
<tr>
<th>Variable</th>
<th>N</th>
<th>Adjusted IRR</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (time updated), years</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><30</td>
<td>4171</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-44</td>
<td>10188</td>
<td></td>
<td>0.116</td>
</tr>
<tr>
<td>45-59</td>
<td>6836</td>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>>60</td>
<td>1736</td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>Transmission group</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Women</td>
<td>4603</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MSM</td>
<td>10561</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Non-MSM men</td>
<td>7767</td>
<td></td>
<td>0.081</td>
</tr>
<tr>
<td>Nadir CD4+ cell count</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>350</td>
<td>6533</td>
<td></td>
<td></td>
</tr>
<tr>
<td>200-350</td>
<td>6723</td>
<td></td>
<td>0.037</td>
</tr>
<tr>
<td><200</td>
<td>9675</td>
<td></td>
<td><0.001</td>
</tr>
<tr>
<td>Calendar period of HIV diagnosis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>2015</td>
<td>4445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2009-2014</td>
<td>5612</td>
<td></td>
<td>0.173</td>
</tr>
<tr>
<td>2004-2008</td>
<td>4964</td>
<td></td>
<td>0.054</td>
</tr>
<tr>
<td>1998-2003</td>
<td>5323</td>
<td></td>
<td>0.151</td>
</tr>
<tr>
<td><1998</td>
<td>2587</td>
<td></td>
<td><0.001</td>
</tr>
</tbody>
</table>

IRR adjusted for calendar time, age (time-updated), risk group and nadir CD4+ cell count
Anal Self-Sampling for HR-HPV Detection

• Access to HRA, cytology limited in certain settings (such as sub-Saharan Africa)

• Evaluation of anal self-sampling (ASS) for HR-HPV detection as compared to anal swab by practitioner (ASP) in 188 MSM (67% with HIV) in Togo
 – Practitioner conducted anal exam and anal cytology post self-sampling

• Acceptability: 99% found ASS procedurally easy; 60% would prefer ASS to ASP (19% with no preference)

• Performance: 6% v 4% of ASS samples uninterpretable
Anal Self-Sampling for HR-HPV Detection

- Substantial agreement between methodologies for HR-HPV (89.7%, k = 0.66) and HPV16 (90.3%, k = 0.75)
- At least one HR-HPV detected in 83% of ASS and 77% of ASP samples
- HPV16 detected in 28% of ASS and 26% of ASP

High concordance between sampling methods; high acceptability, ease of ASS

ASS may help achieve anal cancer screening targets, especially in LMIC
In discussion of how to develop guidance for HRA referral, consider:
- HPV testing (HR-HPV types 16 and 18), inclusive of self-sampling
- Anal cytology in combination
- Nadir CD4, Age, MSM
Metabolic Complications
GLP-1 Receptor Agonists

• Mechanism: Promote insulin release and suppress hepatic glucose output

• Semaglutide
 o DM: 2% decrease in A1c, 6.4 kg weight loss, 26% decrease in MACE events
 o Without DM: 3-4 kg weight loss, 20% decrease in MACE events

• Semaglutide in PWH?
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is common among people with HIV
- GLP-1 (semaglutide) associated with metabolic improvements including improved hepatic steatosis

Semaglutide for MASLD in HIV:
- **ACTG A5361 (SLIM LIVER)**: single arm, open label, phase IIb study of effects of semaglutide on hepatic steatosis
 - MRI proton density fat fraction (MRI-PDFF) quantified intrahepatic triglyceride content (IHTG)

49 PWH suppressed on ART w/ elevated minimum waist circumference, insulin resistance, and ≥ 5% IHTG on MRI-PDFF

Initiated on semaglutide, uptitrated over 24 weeks: 0.25 mg sc weekly → 0.5 mg → 1.0 mg)
 - MRI-PDFF performed again at week 24
Demographics:

- 37% cis-women, 6% transwomen, 57% cis-men
- 27% white non-Hispanic, 33% Black or African American, 39% Hispanic
- Median BMI 35 kg/m², Median waist circumference 114 cm
- Median CD4 701 (IQR 586,869)
- 82% on INSTI, 22% on NNRTI, 4% on PI

Overall clinically significant reductions in IHTG

- 1/3 of participants with complete MASLD resolution
- IHTG improvements correlated with weight loss (mean 7.8 kg loss over 24 weeks) along with waist circumference, fasting plasma glucose, A1c, and serum triglycerides
Semaglutide in HIV

• Effects of Semaglutide on Muscle Structure and Function in the SLIM Liver Study (Ditzenberger et al.)
 o Use of semaglutide associated with loss of psoas muscle volume (without change in physical function) but no change in muscle fat among SLIM Liver participants

• Impact of Semaglutide on Weight Change Among People with HIV: A Stratified Analysis by Baseline BMI (Crane et al.)
 o Among PWH, semaglutide a/w significant weight loss (6.5 kg, 5.7% of body weight)
 o Sensitivity analysis: weight loss was the same regardless of INSTI use
Takeaways

• Use of semaglutide in PWH:
 - Associated with significant weight loss
 - Can be used for successful treatment of MASLD
 - May impact muscle volume without impact in physical function (in short term)

• Needs:
 - Longer term data
 - Access to medication!
Hepatitis B Vaccination in PWH
HBV vaccine seroprotection rates (SPR) in persons with HIV (PWH) are lower (range 18-71%) than in adults without HIV (range 60-80%) with conventional HBV vaccine (HepB-alum)¹

ACTG 5379 (BEe-HIVe):

Arm B (vaccine naïve)²

- 100% of PWH receiving 3-dose series HepB-CpG (Heplisav-B) vaccine achieved seroprotection response (SPR, HBsAb ≥ 10 mIU/mL), 84% HBsAb ≥ 1000 mIU/mL
- 98.5% achieved SPR after two doses, though at lower titers (28% HBsAb ≥ 1000 mIU/mL)

Entry Criteria Arm A and B
- PWH and age 18-70 years
- On ART & HIV-1 RNA <1,000 copies/mL
- CD4 >100 cells/mm³
- Negative HBV surface Ab (sAb)
- No history of hepatitis B
- Not pregnant

Arm A (Vaccine Non-Responders)
- Serum Hep B sAb <10 mIU/mL
- HBV vaccination (>168 days prior)

Arm B (Vaccine Naïve)
- Hep B sAb negative (<45 days)

Arm A: HBV Vaccine Non-Responders
- HepB (CpG) 2 doses: 0, 4 weeks
- HepB (CpG) 3 doses: 0, 4, and 24 weeks
- HepB (Eng-B) 3 doses: 0, 4, and 24 weeks

Arm B: HBV Vaccine Naïve
- HepB (CpG) 3 doses: 0, 4, and 24 weeks

BEe-HIVe: Arm A (Vaccine Non-Responder) Results

Primary SPR Proportion

- **N = 174**
 - 2-Dose: 93.1%
 - 3-Dose: 80.6%

- **N = 169**
 - 2-Dose: 99.4%

- **N = 165**
 - 3-Dose: 80.6%

HepB-CpG SPR Comparison to HepB-Alum

- 2-Dose: HepB-CpG non-inferior
- 3-Dose: HepB-CpG superior

SPR% difference

- **HepB-alum superior <<>> HepB-CpG superior**
 - 12.5% (4.1%, 20.9%)
 - 18.4% (10.4%, 26.2%)
Distribution of Anti-HBs titers at respective endpoints

<table>
<thead>
<tr>
<th></th>
<th>HepB-alum (3-dose)</th>
<th>HepB-CpG (2-dose)</th>
<th>HepB-CpG (3-dose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>165 80.6%</td>
<td>174 93.1%</td>
<td>169 99.4%</td>
</tr>
<tr>
<td>SPR%0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35%</td>
<td>26%</td>
<td>78%</td>
</tr>
<tr>
<td></td>
<td>28%</td>
<td>44%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>18%</td>
<td></td>
<td>18%</td>
</tr>
<tr>
<td></td>
<td>3%</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-HBs titers (mIU/mL)</td>
<td>>1000</td>
<td>100-1000</td>
<td>10-99</td>
</tr>
</tbody>
</table>

Percentage of participants
Takeaways

• PWH with non-response to conventional HBV vaccine achieved superior SPR as compared to 3 doses of HepB-alum

• Three doses of HepB-CpG achieved high proportion of SPR with HBsAb titers > 1000 mIU/mL (78%)
 o Do we need titers this high?
 o Underrepresentation of factors associated with poor response (low CD4 cell count, HIV viremia, HCV, older age)

• No unexpected safety issues or deaths
Co-Occurring Conditions: Take Home Points

• A triaged referral process including CD4 nadir, age, MSM, and HR-HPV (including self-testing) for anal cancer screening in PWH may help tailor population who will benefit most

• Semaglutide leads to significant weight loss and improvement of MASLD in PWH

• HepB-CpG (Heplisav-B) is superior to conventional HBV vaccination in PWH who are prior vaccine non-responders
Questions?

raaka@uw.edu
Acknowledgment

This Mountain West AIDS Education and Training (MWAETC) program is supported by the Health Resources and Services Administration (HRSA) of the U.S. Department of Health and Human Services (HHS) as part of an award totaling $3,333,289 with 0% financed with non-governmental sources.

The content in this presentation are those of the author(s) and do not necessarily represent the official views of, nor an endorsement by, HRSA, HHS, or the U.S. Government.