Osteoporosis and HIV: Optimal Evaluation and Management to Prevent Fractures

Todd T. Brown, MD, PhD
Professor of Medicine and Epidemiology
Division of Endocrinology, Diabetes, & Metabolism
Johns Hopkins University
Disclosures

• Dr Brown has served as a consultant to Gilead Sciences, Inc, GlaxoSmithKline, Janssen, Merck & Co, Inc, Theratechnologies, EMD Serono, and ViiV Healthcare.
The Aging of the HIV Population: Netherlands

Smit, Lancet Inf Diseases, 2015
Multimorbidity will increase markedly in PWH over the next 10 years

- Older age-groups experience an increase in population size and prevalence of multimorbidity.
- Among those ≥ 70yrs, the projected prevalence of multimorbidity increases from 58% (in 2020) to 69% (in 2030), corresponding to an additional 71,000 individuals living with 2+ physical comorbidities beside HIV by 2030.

Kasaie, CROI 2021, Abstract 102
Comorbidity distribution

% of participants

- Hypertension
- Angina pectoris
- Myocardial infarction
- Periph. arterial insufficiency
- Cerebrovascular disease
- Diabetes mellitus type 2
- COPD
- Chronic liver disease
- Reduced renal function
- Fracture / osteoporosis

HIV negative
HIV positive

p<0.0001
p=0.005
p=0.003
p=0.006
p<0.0001
p=0.022
p=0.001

Schouten, IAS, 2012
Why worry about osteoporosis?

- Osteoporosis is common among older populations and more common in PWH compared to matched HIV SN
- Osteoprotic fractures are a major source of morbidity & mortality
- Osteoporosis is a silent disease until fractures occur
- Osteoporosis can be detected in a pre-clinical stage and fractures can be prevented
Fragility Fractures in Women and Men over 50 years

Wasnich RD, Osteoporos Int. 1997
Compared to Other Health Issues

Annual occurrences

- Breast Cancer: 232,924
- Heart Attacks: 735,000
- Strokes: 800,000
- Fractures: 2,000,000

Centers for Disease Control & Prevention 2016
Centers for Disease Control & Prevention, 2015
Centers for Disease Control & Prevention, 2015
National Osteoporosis Foundation, 2015
Relative influence on peak bone mass (men): 40% to 83% genetic; 27% to 60% environmental

0.5% to 1.0% reduction in bone volume/year

Change in Bone Volume (%)

Men

Women

Age (Yrs)

Increase Mortality After Fragility Fractures

Haentjens, Annals Int Medicine, 2010
Physical & cognitive function generally declines over time.
Decline in Function May Not Be Gradual

Quality of Life/Physical & Cognitive Function

- Heart Attack
- Pneumonia
- Hip Fracture
- Stroke

Age

50

100
Preventing comorbid events, including fracture, is critical to maintain function.

Quality of Life/Physical & Cognitive Function

- Heart Attack
- Pneumonia
- Hip Fracture
- Stroke

Women

Fracture Prevalence/100 Persons

HIV Non-HIV

P=0.002
(overall comparison)

Men

Fracture Prevalence/100 Persons

HIV Non-HIV

P<0.0001
(overall comparison)

8,525 HIV-infected
2,208,792 non HIV-infected patients

Triant, JCEM, 2008
Prevalence of Osteoporosis in HIV-infected Patients vs HIV-uninfected Controls: A Meta-analysis

Overall prevalence of osteoporosis in HIV-infected patients 15%

<table>
<thead>
<tr>
<th>Study</th>
<th>Odds ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amiel (2004)</td>
<td>5.03 (1.47,17.27)</td>
</tr>
<tr>
<td>Brown (2004)</td>
<td>4.26 (0.22,82.64)</td>
</tr>
<tr>
<td>Bruera (2003)</td>
<td>4.51 (0.26,79.27)</td>
</tr>
<tr>
<td>Dolan (2004)</td>
<td>2.11 (0.54,8.28)</td>
</tr>
<tr>
<td>Huang (2002)</td>
<td>3.52 (0.15,81.92)</td>
</tr>
<tr>
<td>Knobel (2001)</td>
<td>5.13 (1.80,14.60)</td>
</tr>
<tr>
<td>Loiseau-Peres (2002)</td>
<td>4.28 (0.46,39.81)</td>
</tr>
<tr>
<td>Madeedu (2004)</td>
<td>29.84 (1.80,494.92)</td>
</tr>
<tr>
<td>Tebas (2000)</td>
<td>3.40 (0.19,61.67)</td>
</tr>
<tr>
<td>Teichman (2003)</td>
<td>17.41 (0.97,313.73)</td>
</tr>
<tr>
<td>Yin (2005)</td>
<td>2.37 (1.09,5.16)</td>
</tr>
<tr>
<td>Overall (95% CI)</td>
<td>3.68 (2.31,5.84)</td>
</tr>
</tbody>
</table>
Definitions

Osteoporosis:
“systemic skeletal disorder characterized by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and fracture”

Consensus Conference Am J Med. 1993
Vertebral body: Normal vs Osteoporosis

normal

osteoporotic
Operational Definition (DXA)- WHO Definition

- Osteoporosis: T-score ≤ -2.5
- Osteopenia: T-score = -1.0 to -2.4
- Normal: T-score > -1.0

↑ Risk of fracture by 1.5-3.0 x for each SD decrease

Caveats:
- Z-score (≤-2.0) used in men < 50 years and premenopausal women
- BMD explains only about 50% of fracture risk
DXA Scanning

- Lumbar Spine
- Hip
 - Femoral neck
 - Total hip
- Forearm (distal 1/3)

Sites differ in proportions of cortical and trabecular bone
Fractures Happen at all BMDs
Multifactorial Etiology of Bone Loss in HIV
Bone Loss Occurs First 6 Months after ART Initiation

No significant interaction of NRTI and NNRTI/PI components (p=.63)

* = two-sample t-test

McComsey et al., JID 2011
Bone Loss with ART Initiation: TDF

<table>
<thead>
<tr>
<th>Study</th>
<th>ART regimens</th>
<th>Change in LS BMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stellbrink, ASSERT 2010</td>
<td>TDF/FTC + EFV</td>
<td>-3.6%*</td>
</tr>
<tr>
<td></td>
<td>ABC/3TC + EFV</td>
<td>-1.9%</td>
</tr>
<tr>
<td>McComsey, ACTG 5224s 2011</td>
<td>TDF/FTC</td>
<td>-3.3%*</td>
</tr>
<tr>
<td></td>
<td>ABC/3TC</td>
<td>-1.3%</td>
</tr>
<tr>
<td></td>
<td>ATV/r</td>
<td>-3.1%*</td>
</tr>
<tr>
<td></td>
<td>EFV</td>
<td>-1.7%</td>
</tr>
<tr>
<td>Reynes, PROGRESS 2013</td>
<td>TDF/FTC+LPV/r</td>
<td>-2.5%*</td>
</tr>
<tr>
<td></td>
<td>RAL+LPV/r</td>
<td>+0.7%</td>
</tr>
<tr>
<td>Sax, Gilead 104-111 2015</td>
<td>E/C/F/TDF</td>
<td>-2.9%*</td>
</tr>
<tr>
<td></td>
<td>E/C/F/TAF</td>
<td>-1.3%</td>
</tr>
</tbody>
</table>
Bone Loss After ART Initiation: PIs vs RAL

Mean Percentage Change in BMD over 96 Weeks by Treatment Regimen*

Total Hip
- ATP/r vs DRV/r: p=0.36
- PI/r vs RAL: P=0.005

Lumbar Spine
- ATP/r vs DRV/r: p=0.42
- PI/r vs RAL: P<0.001

*error bars represent 95% confidence intervals

Brown, JID, 2015
Starting ART without TDF or PIs: 0.5-1.0% Bone Loss

Gallant, Lancet, 2017
BMD improves with ART switch

TDF → TAF or raltegravir

Ritonavir-boosted protease inhibitor → raltegravir

<table>
<thead>
<tr>
<th>Study</th>
<th>Sample/Duration</th>
<th>ART regimens</th>
<th>Change in LS spine</th>
<th>Change in FN or TH BMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pozniak JAIDS 2017</td>
<td>N=242 eGFR 30-69 ml/min 48 wks</td>
<td>TDF/FTC/EVG/Cobi to TAF/FTC/EVG/Cobi</td>
<td>+2.3%*</td>
<td>+1.5%*</td>
</tr>
<tr>
<td>Bloch TROP 2014</td>
<td>N=37 48 wks</td>
<td>TDF+PI/r to RAL+PI/r</td>
<td>+3.0%</td>
<td>+2.5%</td>
</tr>
<tr>
<td>Curran SPIRAL-LIP 2012</td>
<td>N=74 48 wks</td>
<td>NRTIs+LPVr to NRTIs+RAL Stay on NRTIs+LPVr</td>
<td>+0.01 g/cm²^2*</td>
<td>no change</td>
</tr>
</tbody>
</table>
How can we prevent fractures in PWH?

• ART switching
 – avoid TDF & PIs in individuals with higher fracture risk

• Appropriate screening
 – DXA: Men ≥ 50 y & all post-menopausal women
 • Caveat: Explains only about 50% of fracture risk

Brown, CID, 2015
US Bone Health and Osteoporosis Foundation (BHOF) Guidelines for DXA Screening

- Those with a fragility fracture after age 50
- Women ≥ 65 yrs, Men ≥ 70 yrs
- Younger postmenopausal women and men 50-69 years with clinical risk factors for fracture
- Adults with a condition (e.g., rheumatoid arthritis) or taking a medication (e.g., glucocorticoids in a daily dose ≥ 5 mg prednisone or equivalent for ≥ three months) associated with low bone mass or bone loss
Other Modalities to Assess Fracture Risk

• Skeletal
 – Spine X-rays
2/3 of those with subclinical vertebral fractures did not have osteoporosis.
Other Modalities to Assess Fracture Risk

• Skeletal
 – Spine X-rays
 – Trabecular Bone Score
Trabecular Bone Score as Noninvasive Measure of Bone Microstructure

- TBS is an indirect measure of bone microstructure: higher score = better microstructure
- Derived from standard LS DXA images
 - Bone texture inhomogeneity determined by pixel variations (ie, trabecular textural index)
 - Software installed on existing DXA scanner, so no extra scan time or radiation exposure
 - Archived LS DXA images can be assessed retrospectively
- FRAX can adjust for TBS

<table>
<thead>
<tr>
<th>TBS Value</th>
<th>Bone Microstructure Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥ 1.35</td>
<td>Normal</td>
</tr>
<tr>
<td>> 1.20 to < 1.35</td>
<td>Intermediate</td>
</tr>
<tr>
<td>≤ 1.20</td>
<td>Degraded</td>
</tr>
</tbody>
</table>

How can we prevent fractures in PWH?

- ART switching
 - avoid TDF & PIs in individuals with higher fracture risk

- Appropriate screening
 - DXA: Men ≥ 50 y & all post-menopausal women
 - Caveat: Explains only about 50% of fracture risk

- Identifying appropriate candidates for treatment
US BHOF Guidelines: Whom to Treat*

- Those with hip or vertebral fractures
- Those with BMD T-scores ≤ -2.5 at the femoral neck, total hip, or spine by DXA
- Those with T-score b/t -1 and -2.5 (osteopenia) at above sites AND 10-year hip fracture probability $\geq 3\%$ or 10-year all major osteoporosis-related fracture $\geq 20\%$ based on FRAX model

*applies to post-menopausal women and men ≥ 50 years
FRAX underestimates fracture risk in PWH
Yang, AIDS, 2018

Should treatment thresholds be any different in PWH?

http://www.shef.ac.uk/FRAX/
What treatment should be given?

- alendronate
- teriparatide
- zoledronic acid
General Recommendations

• Calcium
 – goal: 1200 mg daily, preferably from diet

• Vitamin D supplementation
 – at least 800 IU or target 25OHD > 20 ng/mL (50 nmol/L)

• Smoking cessation

• Alcohol reduction

• Weight-bearing exercise

• Discontinuation of medications associated with osteoporosis (eg, steroids, TZDs, proton pump inhibitors)
Pharmacologic Therapies for Osteoporosis

Antiresorptive
(Osteoclast Directed)

- bisphosphonates
- SERMs (raloxifene)
- denosumab
- hormone replacement therapy

Anabolic
(Osteoblast Directed)

- PTH/PTHrP Analogs (teriparatide, abaloparatide)
- romosozumab
Bisphosphonates

– Reduce vertebral & non-vertebral fractures by 25-50% in non-HIV

<table>
<thead>
<tr>
<th>Author, year (N)</th>
<th>T-score</th>
<th>Medication (duration)</th>
<th>Spine</th>
<th>Hip</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guaraldi, 2004 (N=41)</td>
<td>< -1.0</td>
<td>Alendronate 70 mg/wk (1 yr)</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Mondy, 2005 (N=31)</td>
<td>< -1.0</td>
<td>Alendronate 70 mg/wk (1 yr)</td>
<td>+5.2% vs +1.3%*</td>
<td>NS</td>
</tr>
<tr>
<td>McComsey, 2007 (N=82)</td>
<td>< -1.5</td>
<td>Alendronate 70 mg/wk (1 yr)</td>
<td>+3.1% vs +1.1%*</td>
<td>+4.0% vs +1.4%†</td>
</tr>
<tr>
<td>Rozenberg, 2012 (N=44)</td>
<td>< -2.5</td>
<td>Alendronate 70 mg/wk (2 yrs)</td>
<td>+7.4% vs +4.1%</td>
<td>NS</td>
</tr>
<tr>
<td>Bolland, 2007 (N=43)</td>
<td>< -0.5</td>
<td>Zoledronic acid 4 mg/year (2 yrs)</td>
<td>+8.9% vs +2.6%†</td>
<td>+3.8% vs -0.8%†</td>
</tr>
<tr>
<td>Huang, 2009 (N=30)</td>
<td>< -1.5</td>
<td>Zoledronic acid 5 mg/year (1 yr)</td>
<td>+3.7% vs +0.7%*</td>
<td>+3.2% vs -1.8%*</td>
</tr>
</tbody>
</table>

* P < 0.05; †P < 0.001; NS = not significant

Switch off TDF vs Bisphosphonate: ZEST Study

Hoy, AIDS, 2018

3% Women
Oral vs IV Bisphosphonate

Oral (alendronate)
- Lower Cost
- GI problems
- Poor bioavailability
- Poor compliance/persistence

IV (zoledronic acid)
- Clinic administered
- Acute phase reaction (20-30% with first dose)
- Hypocalcemia
- Directly observed therapy
Antiresorptives: Long Term Adverse Events

Osteonecrosis of the Jaw
1 to 10 cases per 100,000 person-years

Atypical Femoral Fracture
3.2 to 50 cases per 100,000 person-years
Declining Use of Bisphosphonates

Jha, JBMR, 2015
Bisphosphate Holiday

Table 2: Recommendations for Drug Holiday from Bisphosphonates

<table>
<thead>
<tr>
<th>Patient Category</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-risk: T-score still ≤ -2.5 at the hip, previous fracture of the hip or spine or ongoing high-dose glucocorticoid therapy.</td>
<td>Drug holiday not justified.</td>
</tr>
<tr>
<td>Moderate risk: Hip bone mineral density value is now > -2.5 (T-score), and no prior hip or spine fracture.</td>
<td>Consider drug holiday after 3-5 years of alendronate, risedronate, or zoledronic acid therapy. No information about ibandronate and drug holidays.</td>
</tr>
<tr>
<td>Low risk: Did not meet current treatment criteria at the time of treatment initiation.</td>
<td>Discontinue therapy</td>
</tr>
</tbody>
</table>

Questions:
- How long?
- How to monitor?
- What medications after the holiday?

McClung, Am J Medicine, 2013
Fragility Fracture v Atypical Femoral Fracture

Black, NEJM, 2020
Denosumab

- Monoclonal to RANKL
- Decrease osteoclast activation
- Increase BMD, decrease fracture risk
- ? Risk of infection: use judiciously in HIV, particularly in those with low CD4
- Given q 6 months
- Vertebral fracture after discontinuation -> follow with BPs
- Can be given in those with low GFR; concern for hypocalcemia
Pharmacologic Therapies for Osteoporosis

Antiresorptive
(Osteoclast Directed)
- bisphosphonates
- SERMs (raloxifene)
- denosumab
- hormone replacement therapy

Anabolic
(Osteoblast Directed)
- PTH/PTHrP Analogs (teriparatide, abaloparatide)
- romosozumab
PTH/PTHrP Analogs

- Generally given after BP failure
- Can be first line in severe osteoporosis
- 18-24 month duration of therapy
- Need to follow with an antiresorptive
- Daily SC injection

Teriparatide increases BMD more than alendronate in glucocorticoid-induced osteoporosis

Saag, NEJM, 2007
Romasozumab

- Monoclonal antibody to sclerostin
- Increases osteoblast activity; Inhibits osteoclast activity
- Given for 1 year; monthly injections
- Greater BMD gains vs ALN vs TRPT
- Greater fracture risk reduction vs ALN
- For severe osteoporosis or intolerance to other meds
Preventing falls will prevent fractures

Risk Factors for Falls

- Sedative use
- Cognitive or visual impairment
- Lower-extremity disability
 - Neuropathy
- Muscle Weakness
- Frailty

http://courses.washington.edu/bonephys
Strategies to Prevent Falls

• Assess Fall Risk (Are you worried about falling?)
• Physical Therapy Assessment for Strength and Balance
• Environmental Assessment/Modification
 – keep bathroom lights on
 – avoid loose rugs
 – remove clutter
 – keep wires behind furniture
• Behavioral Assessment/Modification
 – avoid excess alcohol, drugs
 – consider de-prescribing
 – wear sturdy shoes
 – avoid slippery/uneven surfaces
Conclusions

- Fractures likely to be a major source of morbidity for aging PWH.
- DXA screening should be more aggressive in PWH
- Bisphosphonates should be considered first line therapy
- Adherence to treatment is a major challenge
- Many questions remain re: the optimal duration of treatment & sequencing of medications
- Fall prevention is essential to prevent fractures.
HIV Treatment Cascade: Identifying and Closing the Gaps in Care
Closing the Gaps for Fracture Prevention in PWH

For Illustration Only; numbers are fictional
Preventing Comorbid Events is Critical to Maintain Function

Quality of Life/
Physical &
Cognitive
Function

Heart Attack
Pneumonia
Hip Fracture
Stroke

Age
50
100
Preventing Comorbid Events is Critical to Maintain Function

Quality of Life/Physical & Cognitive Function

Age

50

100
Acknowledgment

This Mountain West AIDS Education and Training (MWAETC) program is supported by the Health Resources and Services Administration (HRSA) of the U.S. Department of Health and Human Services (HHS) as part of an award totaling $3,333,289 with 0% financed with non-governmental sources.

The content in this presentation are those of the author(s) and do not necessarily represent the official views of, nor an endorsement by, HRSA, HHS, or the U.S. Government.