Osteoporosis and HIV: Optimal Evaluation and Management to Prevent Fractures

Todd T. Brown, MD, PhD Professor of Medicine and Epidemiology Division of Endocrinology, Diabetes, & Metabolism Johns Hopkins University

Disclosures

 Dr Brown has served as a consultant to Gilead Sciences, Inc, GlaxoSmithKline, Janssen, Merck & Co, Inc, Theratechnologies, EMD Serono, and ViiV Healthcare.

The Aging of the HIV Population: Netherlands

Smit, Lancet Inf Diseases, 2015

Slide 3

Multimorbidity will increase markedly in^{Slide 4} PWH over the next 10 years

- Older age-groups experience an increase in population size and prevalence of multimorbidity
- Among those ≥ 70yrs, the projected prevalence of multimorbidity increases from 58% (in 2020) to 69% (in 2030), corresponding to an additional 71,000 individuals living with 2+ physical comorbidities beside HIV by 2030

Slide 5

Why worry about osteoporosis?

- Osteoporosis is common among older populations and more common in PWH compared to matched HIV SN
- Osteoprotic fractures are a major source of morbidity & <u>mortality</u>
- Osteoporosis is a silent disease until fractures occur
- Osteoporosis can be detected in a pre-clinical stage and fractures can be prevented

Fragility Fractures in Women and Men over 50 years

Wasnich RD, Osteoporos Int. 1997

Compared to Other Health Issues

Centers for Disease Control & Prevention 2016 Centers for Disease Control & Prevention, 2015 Centers for Disease Control & Prevention, 2015 National Osteoporosis Foundation, 2015

BMD Decreases With Age

Orwoll ES et al. Endocr Rev. 1995;16(1):87-116.

Increase Mortality After Fragility Fractures

Haentjens, Annals Int Medicine, 2010

Physical & cognitive function generally declines over time

Decline in Function May Not Be Gradual

Preventing comorbid events, including fracture, is critical to maintain function

Fracture Prevalence in HIV-infected and non-HIV-infected Persons in MGH/Partners Healthcare System: 1996-2008

8,525 HIV-infected 2,208,792 non HIV-infected patients

Slide 14

Prevalence of Osteoporosis in HIV-infected Patients vs HIV-uninfected Controls: A Meta-analysis

Overall prevalence of osteoporosis in HIV-infected patients 15%

Definitions

Osteoporosis:

"systemic skeletal disorder characterized by low bone mass and microarchitectural deterioration of bone tissue, with a consequent increase in bone fragility and fracture"

Vertebral body: Normal vs Osteoporosis

Slide 17

Definitions

Operational Definition (DXA)- WHO Definition

- Osteoporosis: T-score \leq -2.5
- Osteopenia: T-score= -1.0 to -2.4
- Normal: T-score > -1.0

↑ Risk of fracture by 1.5-3.0 x for each SD decrease

Caveats:

- Z-score (≤-2.0) used in men < 50 years and premenopausal women
- BMD explains only about 50% of fracture risk

DXA Scanning

- Lumbar Spine
- Hip
 - Femoral neck
 - Total hip
- Forearm (distal 1/3)

Sites differ in proportions of cortical and trabecular bone

Name: Express Scans, 2 Patient ID: DOB: August 24, 1944 Sex: Female Ethnicity: White Height: 65.0 in Weight: 150.0 lb Age: 61

Referring Physician:

Image not for diagnostic use k = 1.138, d0 = 48.0 116 x 149

Scan	Inf	forma	atio	n:

Scan Date:	November 12, 2005	ID: A11120501
Scan Type:	x Lumbar Spine	
Analysis:	November 12, 2005 09 Lumbar Spine	9:48 Version 12.4:3
Operator: Model:	Discovery C (S/N 812	02)
Comment		

DXA Results Summary:

Region	Area (cm ²)	BMC (g)	BMD (g/cm ²)	T - score	PR (%)	Z - score	AM (%)
L1	14.41	14.44	1.002	0.7	108	2.0	129
L2	15.27	16.33	1.069	0.4	104	1.8	123
L3	16.99	19.69	1.159	0.7	107	2.2	127
L4	18.74	21.27	1.135	0.2	102	1.8	121
Total	65.41	71.72	1.096	0.4	105	1.9	124

Total BMD CV 1.0%, ACF = 1.000, BCF = 1.000, TH = 3.855 WHO Classification: Normal Fracture Risk: Not Increased

Physician's Comment:

Bedford Osteoporosis Center 35 Crosby Drive

Bedford, MA 01730

Telephone: 781-999-7300	E-Mail: info@hologic.com	Fax: 781-280-0614
Name: Smith, Jane	Sex: Female	Height: 61.0 in
Patient ID: 00368	Ethnicity: White	Weight: 121.0 lb
DOB: February 19, 1927	Menopause Age: 46	Age: 71

Referring Physician: Wilson

Image not for diagnostic and

Scan Information: Scan Date: 11/2/98

11/2/98 ID: B1102950D
f Left Hip
11/2/99 10:31 Version 8.26
Left Hip
AR
QDR
BASELINE

DXA Results Summary:

Region	Area [cm ⁴]	BMC	BMD [g/cm ²]	T - Score	Z - Score
Neck	5.08	2.07	0.408	-4.0	-2.1
Trochanter	12.61	4.62	0.365	-3.3	-1.9
Inter	16.52	10,70	0.648	-2.9	-1.6
Total	34.20	17.39	0.508	-3.6	-2.0
Ward's	1.04	0.20	0.193	-4.6	-2.0

Total BMD CV 1.0%, ACF=1.031, BCF=1.020, TH=5.208 WHO Classification: Osteoporosio Fracture Risk, High

Physician's Comment:

Total

HOLOGIC[®]

Fractures Happen at all BMDs

Multifactorial Etiology of Bone Loss in HIV

Bone Loss Occurs First 6 Months after ART Initiation

* - two-sample t-test

No significant interaction of NRTI and NNRTI/PI components (p=.63)

Slide 24

Bone Loss with ART Initiation: TDF

Study	ART regimens	Change in LS BMD
Stellbrink, ASSERT 2010	TDF/FTC + EFV ABC/3TC + EFV	-3.6%* -1.9%
McComsey, ACTG 5224s 2011	TDF/FTC ABC/3TC ATV/r EFV	-3.3%* -1.3% -3.1%* -1.7%
Reynes, PROGRESS 2013	TDF/FTC+LPV/r RAL+LPV/r	-2.5%* +0.7%
Sax, Gilead 104-111 2015	E/C/F/TDF E/C/F/TAF	-2.9%* -1.3%

Bone Loss After ART Initiation: Pls vs RAL

Brown, JID, 2015

Starting ART without TDF or PIs: 0.5-1.0% Bone Loss

Gallant, Lancet, 2017

Slide 26

BMD improves with ART switch

TDF TAF or raltegravir

Ritonavir-boosted protease inhibitor may raltegravir

Study	Sample/ Duration	ART regimens	Change in LS spine	Change in FN or TH BMD
Pozniak JAIDS 2017	N=242 eGFR 30-69 ml/min 48 wks	TDF/FTC/EVG/Cobi to TAF/FTC/EVG/Cobi	+2.3%*	+1.5%*
Bloch TROP 2014	N=37 48 wks	TDF+PI/r to RAL+PI/r	+3.0%	+2.5%
Curran SPIRAL-LIP 2012	N=74 48 wks	NRTIs+LPVr to NRTIs+ RAL Stay on NRTIs+LPVr		+0.01 g/cm ^{2*} no change

How can we prevent fractures in PWH?

- ART switching
 - avoid TDF & PIs in individuals with higher fracture risk
- Appropriate screening
 - DXA: Men ≥ 50 y & all post-menopausal women
 - Caveat: Explains only about 50% of fracture risk

US Bone Health and Osteoporosis Foundation (BHOF) Guidelines for DXA Screening

- Those with a fragility fracture after age 50
- Women \geq 65 yrs, Men \geq 70 yrs
- Younger postmenopausal women and men 50-69 years with clinical risk factors for fracture
- Adults with a condition (e.g., rheumatoid arthritis) or taking a medication (e.g., glucocorticoids in a daily dose ≥ 5 mg prednisone or equivalent for ≥ three months) associated with low bone mass or bone loss

Other Modalities to Assess Fracture Risk

- Skeletal
 - Spine X-rays

Subclinical Vertebral Fracture in an Italian Cohort

2/3 of those with subclinical vertebral fractures did not have osteoporosis

Other Modalities to Assess Fracture Risk

- Skeletal
 - Spine X-rays
 - Trabecular Bone Score

Trabecular Bone Score as Noninvasive Slide 33 Measure of Bone Microstructure

- TBS is an indirect measure of bone microstructure: higher score = better microstructure
- Derived from standard LS DXA images
 - Bone texture inhomogeneity determined by pixel variations (ie, trabecular textural index)
 - Software installed on existing DXA scanner, so no extra scan time or radiation exposure
 - Archived LS DXA images can be assessed retrospectively
- FRAX can adjust for TBS

Healthy well-structured trabecular bone (TBS = 1.360):

Osteoporosis altered trabecular bone (TBS = 1.102):

Sharma A, et al. International Comorbidities WS 2016. Abstract O04. New tools to predict fracture risk. http://www.mayoclinic.org.

Slide credit: clinicaloptions.com

How can we prevent fractures in PWH?

- ART switching
 - avoid TDF & PIs in individuals with higher fracture risk
- Appropriate screening
 - DXA: Men ≥ 50 y & all post-menopausal women
 - Caveat: Explains only about 50% of fracture risk
- Identifying appropriate candidates for treatment

US BHOF Guidelines: Whom to Treat*

- Those with hip or vertebral fractures
- Those with BMD T-scores ≤ -2.5 at the femoral neck, total hip, or spine by DXA
- Those with T-score b/t -1 and -2.5 (osteopenia) at above sites AND 10-year hip fracture probability ≥ 3% or 10-year all major osteoporosis-related fracture ≥ 20% based on FRAX model

20	HOME CALCULATION TOOL PAPER CHARTS FAQ REFERENCES	Select a Languag
	Calculation Tool	
	Please answer the questions below to calculate the ten year probability of fracture	with BMD.
	Country : US(Black) Name / ID : About the risk factors (
	Questionnaire: 10. Secondary osteoporosis No Yes	
d:	1. Age (between 40-90 years) or Date of birth 11. Alconol 3 more units per day No Yes Age: Date of birth: 12. Femoral neck BMD Y: M: D:	
	2. Sex Male Female Clear Calculate	
t Conversion:	3. Weight (kg) 4. Height (cm)	
:	5. Previous fracture • No • Yes	
[convert]	6. Parent fractured FRAX underestimates fracture ri	sk in PWH
	7. Current smoking 8. Glucocorticoids 9. Glucocorticoids 9. Glucocorticoids 9. Glucocorticoids	
	9. Rheumatoid arth Should treatment thresholds be a	ny different in

For the clinical risk factors a yes or no response is asked for. If the field is left blank, then a "no" response is

http://www.shef.ac.uk/FRAX/

What treatment should be given?

Slide 37

General Recommendations

- Calcium
 - goal: 1200 mg daily, preferably from diet
- Vitamin D supplementation
 at least 800 IU or target 25OHD > 20 ng/mL (50 nmol/L)
- Smoking cessation
- Alcohol reduction
- Weight-bearing exercise
- Discontinuation of medications associated with osteoporosis (eg, steroids, TZDs, proton pump inhibitors)

Pharmacologic Therapies for Osteoporosis

<u>Antiresorptive</u>

(Osteoclast Directed)

- bisphosphonates
- SERMs (raloxifene)
- denosumab
- hormone replacement therapy

<u>Anabolic</u>

(Osteoblast Directed)

 PTH/PTHrP Analogs (teriparatide, abaloparatide)

Slide 39

romosozumab

Bisphosphonates

– Reduce vertebral & non-vertebral fractures by 25-50% in non-HIV

Author, year (N)	T-score	Medication (duration)	Spine	Нір
Guaraldi, 2004 (N=41)	< -1.0	Alendronate 70 mg/wk (1 yr)	NS	NS
Mondy, 2005 (N=31)	< -1.0	Alendronate 70 mg/wk (1 yr)	+5.2% vs +1.3%*	NS
McComsey, 2007 (N=82)	< -1.5	Alendronate 70 mg/wk (1 yr)	+3.1% vs +1.1%*	+4.0% vs +1.4% ⁺
Rozenberg, 2012 (N=44)	< -2.5	Alendronate 70 mg/wk (2 yrs)	+7.4% vs +4.1%	NS
Bolland, 2007 (N=43)	< -0.5	Zoledronic acid 4 mg/year (2 yrs)	+8.9% vs +2.6% ⁺	+3.8% vs -0.8% ⁺
Huang, 2009 (N=30)	< -1.5	Zoledronic acid 5 mg/year (1 yr)	+3.7% vs +0.7%*	+3.2% vs -1.8%*

*P < 0.05; †P < 0.001; NS = not significant

Guaraldi G, et al. *HIV Clin Trials*. 2004;5(5):269-77; Mondy K, et al. *J Acquir Immune Defic Syndr*. 2005;38(4):426-31; McComsey GA, et al. *AIDS*. 2007;21(18):2473-82; Rozenberg S, et al. *AIDS Res Hum Retroviruses*. 2012;28(9):972-80; Bolland MJ, et al. *J Clin Endocrinol Metab*. 2007;92(4):1283-8; Huang J, et al. *AIDS*. 2009;23(1):51-7.

Slide 41

Switch off TDF vs Bisphosphonate: ZEST Study

ZOL vs TDF switch for low BMD

1 pt in ZOL group had unevaluable hip BMD

M12 data carried forward for 1 pt/group because of subsequent left hip replacements

Baseline data carried forward to M12 for 1 patient in TDF switch group

Hoy, AIDS, 2018

3% Women

Oral vs IV Bisphosphonate

Oral (alendronate)

- Lower Cost
- GI problems
- Poor bioavailability
- Poor compliance/ persistence

IV (zoledronic acid)

- Clinic administered
- Acute phase reaction (20-30% with first dose)
- Hypocalcemia
- Directly observed therapy

Slide 43

Antiresorptives: Long Term Adverse Events

Osteonecrosis of the Jaw 1 to 10 cases per 100,000 person-years

Atypical Femoral Fracture 3.2 to 50 cases per 100,000 person-years

Declining Use of Bisphosphonates

Jha, JBMR, 2015

Bisphosphate Holiday

Table 2 Recommendations for Drug Holiday from Bisphosphonates			
Patìent Category	Recommendation		
Hìgh-risk: T-score still ≤—2.5 at the hìp, previous fracture of the hìp or spine or ongoing hìgh-dose glucocorticoid therapy.	Drug holiday not justified.		
Moderate risk: Hip bone mineral density value is now >—2.5 (T-score), and no prior hip or spine fracture.	Consider drug holiday after 3-5 years of alendronate, risedronate, or zoledronic acid therapy. No information about ibandronate and drug holidays.		
Did not meet current treatment criteria at the time of treatment initiation.	How long? How to monitor? What medications after the holiday?		

McClung, Am J Medicine, 2013

Fragility Fracture v Atypical Femoral Fracture

Slide 46

Denosumab

- Monoclonal to RANKL
- Decrease osteoclast activation
- Increase BMD, decrease fracture risk
- ? Risk of infection: use judiciously in HIV, particularly in those with low CD4
- Given q 6 months
- Vertebral fracture after discontinuation -> follow with BPs
- Can be given in those with low GFR; concern for hypocalcemia

<u>Antiresorptive</u>

(Osteoclast Directed)

- bisphosphonates
- SERMs (raloxifene)
- denosumab
- hormone replacement therapy

<u>Anabolic</u>

(Osteoblast Directed)

- PTH/PTHrP Analogs (teriparatide, abaloparatide)
- romosozumab

PTH/PTHrP Analogs

Teriparatide increases BMD more than alendronate In glucocorticoid-induced osteoporosis Generally given after BP
failure

- Can be first line in severe osteoporosis
- 18-24 month duration of therapy
- Need to follow with an antiresorptive
- Daily SC injection

Saag, NEJM, 2007

Romosozumab

- Monoclonal antibody to sclerostin
- Increases osteoblast activity; Inhibits osteoclast activity
- Given for 1 year; monthly injections
- Greater BMD gains v ALN vs TRPT
- Greater fracture risk reduction vs
 ALN
- For severe osteoporosis or intolerance to other meds

Preventing falls will prevent fractures

Risk Factors for Falls

- Sedative use
- Cognitive or visual impairment

Slide 51

- Lower-extremity disability
 - Neuropathy
- Muscle Weakness
- Frailty

http://courses.washington.edu/bonephys

Strategies to Prevent Falls

Slide 52

- Assess Fall Risk (Are you worried about falling?)
- Physical Therapy Assessment for Strength and Balance
- Environmental Assessment/Modification
 - keep bathroom lights on
 - avoid loose rugs
 - remove clutter
 - keep wires behind furniture
- Behavioral Assessment/Modification
 - avoid excess alcohol, drugs
 - consider de-prescribing
 - wear sturdy shoes
 - avoid slippery/uneven surfaces

Conclusions

- Fractures likely to be a major source of morbidity for aging PWH.
- DXA screening should be more aggressive in PWH
- Bisphosphonates should be considered first line therapy
- Adherence to treatment is a major challenge
- Many questions remain re: the optimal duration of treatment & sequencing of medications
- Fall prevention is essential to prevent fractures.

HIV Treatment Cascade: Identifying and Closing the Gaps in Care

Closing the Gaps for Fracture Prevention in PWH

For Illustration Only; numbers are fictional

Preventing Comorbid Events is Critical to Maintain Function

Preventing Comorbid Events is Critical to 7 Maintain Function

This Mountain West AIDS Education and Training (MWAETC) program is supported by the Health Resources and Services Administration (HRSA) of the U.S. Department of Health and Human Services (HHS) as part of an award totaling \$3,333,289 with 0% financed with non-governmental sources.

The content in this presentation are those of the author(s) and do not necessarily represent the official views of, nor an endorsement by, HRSA, HHS, or the U.S. Government.

