Pneumocystis Pneumonia: Part 1

Brian R. Wood, MD
Medical Director, MWAETC Project ECHO
Associate Professor of Medicine, University of Washington

Last Updated: April 7, 2022
Disclosures

No conflicts of interest or relationships to disclose.
Pneumocystis Pneumonia: Part 1

• Background & biology
• Clinical manifestations
• Diagnosis
Pneumocystis: Background & Biology
Pneumocystis: Background

• Identified 1909 by Chagas; reported as part of life cycle of *Trypanosoma cruzi*
• Recognized as separate organism in 1912; named *Pneumocystis carinii*
• 1940s-50s: pneumonia epidemics in premature and malnourished infants
• 1980s-90s: leading cause of death in individuals with advanced HIV
Pneumocystis: Biology

- Initially classified as protozoa; now an atypical **fungus**
 - Lacks many typical fungal cell wall components (e.g., ergosterol)
 - Can’t be cultured
- Each mammalian species infected with unique strain
 - *Pneumocystis carinii*: rats
 - *Pneumocystis jirovecii*: humans
- Worldwide, near ubiquitous exposure: most exposed in infancy
Pneumocystis Disease: Reactivation vs New Infection

Reactivation
- Most colonized by infancy
- Disease in animals if immunosuppress

New Infection
- Animals develop infection when exposed
- Repeat infection different strains
- Clusters of cases with same genotype

Pneumocystis: Risk Factors

- **Key = Immunosuppression**
 - Multicenter AIDS Cohort Study:
 - Incidence with CD4 count 201 to 350 = 0.5%
 - Within 6 months of falling below 200 = 8.4%
 - Within 12 months of falling below 200 = 18.4%
 - Within 6 months of developing thrush = 29.5%
 - Key risk factors: CD4 <200, CD4% <14%, oral thrush, previous PCP

- Environmental factors?

- Exposure to infected or colonized persons?

Pneumocystis: Clinical Manifestations
Pneumocystis: Clinical Manifestations

<table>
<thead>
<tr>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fever, chills, fatigue, malaise</td>
</tr>
<tr>
<td>Dyspnea (“door-stop”)</td>
</tr>
<tr>
<td>Dry cough</td>
</tr>
<tr>
<td>Pleuritic chest pain</td>
</tr>
<tr>
<td>*Usually subacute (mean 3 weeks)</td>
</tr>
</tbody>
</table>

- **Symptoms**: Fever, chills, fatigue, malaise; Dyspnea (“door-stop”); Dry cough; Pleuritic chest pain.
- **Signs**: Hypoxia (especially with exertion); Diffuse, bilateral, interstitial infiltrates; Ground glass opacities, sometimes mosaic or geographic pattern; Dyspnea (“door-stop”); Tachypnea, tachycardia; Pneumothorax; Septal thickening, “crazy paving”.
- **Chest X-Ray**: Dry cough; Inspiratory crackles; Pleural effusion, lobar infiltrate, nodules less common; Thin-walled cystic lesions.
- **Chest CT**: Pneumothorax; Septal thickening, “crazy paving”.
- **Symptoms usually subacute (mean 3 weeks)**
- **Chest Exam**: Normal in 50%
- **Chest X-Ray**: Normal in 25%
- **High-Resolution CT**: Usually abnormal.
Pneumocystis: Diagnosis
Pneumocystis: Diagnosis

• **Gold standard**: identification of organism on stain of respiratory secretions or tissue; organism has never been reliably cultured
 - Chemical stain (methenamine silver, toluidine blue, calcofluor white)
 - Immunofluorescence (IF) stain (*preferred*)

• Induced sputum: sensitivity <50-90%
 - Generally not improved by repeating

• Bronchoscopy with BAL: sensitivity 90-99%

• Lung biopsy: sensitivity 95-100%

2) CDC OI Guidelines. PCP section last updated March 2019. clinicalinfo.hiv.gov
Image of cysts on IF stain from CDC (https://www.cdc.gov/dpdx/pneumocystis/index.html)
Pneumocystis Diagnosis: Respiratory Specimen PCR

• Higher sensitivity than staining methods
• Specificity is an issue: infection versus colonization?
 • Detects organism in many asymptomatic & immunocompetent persons
• Quantitative better than qualitative, but cutoffs used in literature variable
• Correlate with clinical/radiologic findings!

Table 2. Diagnostic Criteria for Definition of Proven and Probable Pneumocystis jirovecii Pneumonia

<table>
<thead>
<tr>
<th>Description</th>
<th>Proven PCP</th>
<th>Probable PCP</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Clinical and radiologic criteria, plus:</td>
<td>- Demonstration of P. jirovecii by microscopy using conventional or immunofluorescence staining in tissue or</td>
<td>- Appropriate host factors and clinical and radiologic criteria, plus:</td>
</tr>
<tr>
<td>- Demonstration of P. jirovecii by microscopy using conventional or immunofluorescence staining in respiratory specimens</td>
<td></td>
<td>- Amplification of P. jirovecii DNA by quantitative real-time PCR in respiratory specimen or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Detection of β-D-glucan in serum (alternative method; another IFD and a false-positive result should be ruled out)</td>
</tr>
</tbody>
</table>

Abbreviations: IFD, invasive fungal diseases; PCP, *Pneumocystis jirovecii* pneumonia; PCR, polymerase chain reaction.

Pneumocystis Diagnosis: Blood Tests

- **LDH:**
 - Non-specific; prognostic?

- **1-3-Beta-D-Glucan:**
 - Sensitivity 93%, specificity 75%
 - May be elevated in some other invasive fungal infections (eg, histo)

<table>
<thead>
<tr>
<th>1-3-Beta-D-Glucan Characteristics</th>
<th>High Pre-Test Probability</th>
<th>Low Pre-Test Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Post-test probability of negative result</td>
<td>40%</td>
<td>8%</td>
</tr>
<tr>
<td>Post-test probability of positive result</td>
<td>96%</td>
<td>57%</td>
</tr>
</tbody>
</table>

1) Gilroy SA, Bennett NJ. Semin Respir Crit Care Med 2011;32(6):775-82.
Pneumocystis: Summary of Diagnostic Pathway

- CXR; if normal and high suspicion → high-resolution chest CT
- Blood tests: ABG, beta-D-glucan (if available), +/- LDH
- Induced sputum: IF stain (or PCR)
- If induced sputum negative → bronchoscopy/BAL IF stain (or PCR)
- Lung biopsy if still unclear (rarely needed)
The content in this presentation are those of the author(s) and do not necessarily represent the official views of, nor an endorsement by, HRSA, HHS, or the U.S. Government.