

Renal issues in the patient with HIV

Melanie (Derman) Hoenig, M.D. Beth Israel Deaconess Medical Center Harvard Medical School mhoenig@bidmc.harvard.edu

Renal disease in the context of HIV

- HIV associated nephropathy (collapsing FSGS)
- IgA nephropathy
- Lupus-like glomerulonephritis
- Thrombotic microangiopathy (TTP/HUS)
- Membranous nephropathy
- Membranoproliferative GN
- Rhabdomyolysis with AKI (statins, newer ARV, cocaine)
- Nephropathy assoc with concurrent infections (hep B,C)
- Acute interstitial nephritis
- Acute kidney injury (AKI) from prerenal azotemia or ATN
- Crystal induced nephropathy
- Renal failure and Fanconi's syndrome
- Infiltrative diseases (lymphoma or KS)
- Chronic kidney disease

Adapted from Balow KI 2005

Routine monitoring of renal function

Medications

Tenofovir and other antiretroviral agents

- HIV nephropathy
- CKD and ESKD

Routine monitoring of pt with HIV

	Basic chemistry	urinalysis	other
Entry to care	✓	✓	
Q 6 months			
Initiation of ART	✓	✓	
2-8 weeks after initiation or modification	✓		
Q 3-6 months	✓	□(on TDF) (annual if other)	Serum phosphate on TDF?

Guidelines for use of antiretroviral agents in HIV-1-infected adults and adolescents, revised 5/1/14

1.All formulas for eGFR perform poorly when renal function is close to normal2. All formulas are meant for the steady state, not AKI

Ann Int Med 1999; 130

MEASUREMENT OF URINARY PROTEIN

- Dipstick Method
- 24 hour urine collections
- Urinary "ratios"

Protein to creatinine ratio

Microalbuminuria (albumin to creatinine ratio)

PROTEIN: CREATININE RATIO ALIQUOT OF RANDOM SPECIMEN USES SSA (DETECTS ALL PROTEINS)

URINARY

IN STEADY STATE, CORRELATES WITH

24 HR URINARY PROTEIN EXCRETION

NORMAL RATIO IS <0.2</p>

Correlation of protein: creatinine ratio and 24 hour urine protein

Increasing albuminuria

>3000

Szczech L et al. HIV Medicine 2010: 11 419-426

Staging HIV+ patients by eGFR AND proteinuria provides risk stratification

		Proteinuria				
		0 mg/dL	30-100 mg/dL	300-1,000 mg/dL		
E I/I	eGFR ≥60 ml/min/1.73m ²					
STAGE	Number of Patients at Risk	15,348	2,390	185		
ST	ESRD Rate per 1,000 Person-Years	1.0	6.6	35.4		
	Hazard Ratio (95% CI)†	Reference	6.3 (4.6-8.6)	24.6 (16.0-37.7)		
STAGEIII	eGFR 30-59 ml/min/1.73m ²			_		
TAC	Number of Patients at Risk	484	350	85		
S	ESRD Rate per 1,000 Person-Years	5.5	31.1	115.6		
	Hazard Ratio (95% CI)†	7.4 (4.0-13.8)	37.1 (25.3-54.6)	88.7 (56:0-140.5)		
\geq	eGFR <30 ml/min/1.73m ²					
Ц С	Number of Patients at Risk	38	106	60		
SIAGE	ESRD Rate per 1,000 Person-Years	46.1	1.11.4	192.9		
	Hazard Ratio (95% CI)†	42.6 (18.3-99.4)	132.8 (87.1-202.5)	523.0 (323.6-845.4)		
			nil/atal AIKD 2			

Jotwani V et al. AJKD 2012 59(5): 628

Which protein should we measure?

- Urinary albumin to creatinine ratio (ACR) for low levels of proteinuria in DIABETES MELLITUS
- Urinary protein to creatinine ratio for overt (dipstick +) and heavy proteinuria
- Other proteins measured can reflect tubular damage including retinol binding protein and B2 microglobulin but the role of these tests in monitoring patients has not yet been defined

Case

Case

- 45 year old man with well controlled HIV referred for discolored urine
- Undetectable HIV viral load, CD4 446
- Began ARV in 1996 indinivir and AZT and then with atazanavir (liver disease),

current regimen since 2009

- Meds: omeprazole, rosuvastatin
 - Darunavir 400 mg
 - Emtricitabine-tenofovir (Truvada) 200-300mg

Initial visit: BP 113/81 HR 69 Serum creatinine 0.8-1.1 from 1999 to 2010, then 3/2012 1.2 5/2012 1.3 8/2012 1.5

9/2012

urine protein to creatinine ratio 0.9 g/g (nl <0.2) Urine albumin: creatinine ratio 229 mcg/mg

1.6

<u>Serum</u>

- Na⁺ 138 mEq/L
- Cl⁻ 114 mEq/L
- K⁺ 4.3 mEq/L
- HCO₃⁻ 26 mEq/L
- BUN 28 mg/dL
- creat 1.6 mg/dL
- glucose 109 mg/dL
- Phos 2.3 (2.7-4.5 mg/dL)
- Uric acid 1.9 mg/dL (nl 3.4-7.0)

Causes of low serum phosphate?

SERUM CALCIUM

Routine biochemistry in vitamin D deficiency Peacey SR J R Soc Med 2004; 97; 322-325

ALKALINE PHOSPHATASE

<u>Urine</u>

- Urine dipstick: glu 100, "protein" 100, pH 6.5
- Alb/creat 229 mcg/mg creat
- prot/creat 0.9 mg/mg
- Urine Phos 144 mg/dL
- Urine creatinine 445 mg/dL

FE PO₄: % filtered load Phosphate excreted

(normal is <<15% if serum PO_4 low and kidney normal) Some use fractional tubular reabsorption or [1-FEPO₄] (normal is >>85%)*

Tenofovir nucleotide analogue RTI

- Renally cleared by filtration and tubular secretion
- In initial large scale trials for efficacy and safety, tenofovir did not cause significant renal disease
- Post FDA approval has identified nephrotoxicity by case reports and cohort studies :
 - Acute tubular necrosis
 - Fanconi's syndrome
 - (glycosuria, PO₄ wasting +/- \downarrow renal function)
 - Nephrogenic diabetes insipidus
 - $\hfill\square$ Proteinuria and chronic kidney disease
- Increased risk in patients with underlying renal disease or boosted with protease inhibitor

Adefovit

Tenofovir is transported into the cell by organic anion transporters and secreted by the apical transporters- multidrug resistance proteins

а

Perazella M KI 2010 78

Perazella M KI 2010 78

Metanalysis on change in GFR (by CG) +/-TDF.

Study or subcategory	Total	MD [95% CI], mL/min	MD [95% CI], mL/min
RCT			
ART naive			
BICOMBO 2009	333	-0.70 [-2.73, 1.33]	
De Jesus 2009	300	-0.60 [-1.71, 0.51]	-
ART experienced			
HEAT 2009	672	-3.00 [-9.06, 3.06]	_
Arribas 2008	458	-3.00 [-6.77, 0.77]	
Gallant 2004	600	-5.00 [-8.80, -1.20]	
Subtotal		-1.50 [-2.96, -0.005]	•
Cohort			
ART naive			
Kinai 2009	63	-17.00 [-31.35, -2.65]	
Goicoechea 2008 NNRTI	62	-0.22 [-11.18, 10.74]	
Goicoechea 2008 RPI	84	-7.88 [-18.66, 2.90]	
HOPS 2007	736	-4.40 [-6.97, -1.83]	
Winston 2006	948	-6.33 [-14.85, 2.19]	_
ART experienced			
Fux 2007	284	-4.90 [-8.58, -1.22]	
Fux 2007 N	569	-8.20 [-13.13, -3.27]	
Gallant 2005	658	-5.80 [-8.70, -2.90]	
Subtotal		-5.45 [-7.02, -3.89]	•
Total		-3.90 [-5.66, -2.14]	•
			-20 -10 0 10 20
	Nlor	hrotovici	ty likely relikely Neph Lago likel
	ING	ohrotoxici	ty likely 🛶 Less likel

Cooper R D et al. Clin Infect Dis. 2010;51:496-505

Recommendations for use of tenofovir

- Monitor patients on TDF for tubular toxicity (serum creatinine and serum phosphate,
- urinary protein:creatinine ratio vs. albuminuria? phosphaturia, uricosuria, glycosuria) q 6 months (or 3?)
- If hypophosphatemia, r/o vitamin D deficiency
- When there are clear proximal tubular defects, the medication must be discontinued
- Dose reduce TDF for CKD and avoid combination therapy with GFR <30 ml/min</p>

- 1. Tenofovir
- 2. Emtricitabine
- 3. Elvitegravir

(new integrase inhibitor)

4. Novel "boosting" agent, cobicistat --inhibits P450 (CY3A) and "boosts elvitegravir levels

ATRIPLA

- 1. Tenofovir
- 2. Emtricitabine
- 3. Efavirenz

Cobicistat effects serum creatinine not the GFR

COBI in HIV- Subjects with Mild to Moderate Renal Impairment

German P, et al. ICAAC 2011; Chicago. #H2-804 → J Acquir Immune Defic Syndr. 2012 Sep 1;61(1):32-40.

Cobicistat effect seen in STRATEGY study (single tablet regimens for virologically suppressed patients)

Median change from baseline in SCr at week 48: E/C/F/TDF, 6.19 µmol/L vs. PI + RTV + FTC/TDF, -0.88 µmol/L Arribas J, et al. CROI 2014; Boston. #551LB

Cobicistat may f serum creatinine

- Abacavir
- Dolutegravir
- Iamivudine

New prodrug tenofovir alafenamide (TAF) may lead to less renal exposure to drug

\rightarrow TAF does not appear to be a substrate for OAT

Tenofovir Alafenamide is not a substrate for renal organic anion transporter 1 and does not exhibit OAT dependent cytotoxicity Bam RA, Yant SR and Cihlar T CROI 2013; 540

Crystal induced renal disease

- Protease inhibitors
 - Indinivir (insoluble in acid pH)
 - Atazanavir (Reyataz) insoluble in alkaline pH
 - Nelfinivir
 - amprenavir
- NRTI Efavirenz
- Other medications
 - Acyclovir
 - foscarnet

Nelfinivir crystals

Crystal induced renal disease

Urine with crystals from acyclovir

Sawyer MH AmJ Med 1988 84(6) 1002

Renal Tissue in an HIV+ patient Treated with Indinavir

Tashima, K. T. N Engl J Med 1997;336:138

Acute interstitial nephritis

Drugs that may cause AIN Antibiotics

- β lactam antibiotics
- Sulfonamides (tmp/smz, dapsone)
- Quinolones
- □rifampin
- Proton pump inhibitors***
- NSAIDS
- Allopurinol
- ARV: Abacavir, ritonovir, atazanavir, indinivir,
 - □ efavirenz * (hypersensitivity RXN)
- cocaine

HIV, BK virus and other infectious agents

Review in CJASN 2010 5(5): 798

Renal dosing of ARV

- Dose reduction for nucleoside/tide reverse transcriptase inhibitors
- Caution with combination pills
- Some PI need dose alteration
- NNRTI extensive hepatic metabolism
- Newer agents (darunavir, etravirine, raltegravir, maraviroc) primarily hepatic metabolism but not extensively tested in patients with CKD
- Reports of inadequate treatment in many patients with CKD or ESKD

Double check at http://www.aidsinfo.nih.gov/

New table

 Table 15. Antiretroviral Therapy-Associated Adverse Events That Can Be Managed with Substitution

 of Alternative Antiretroviral Agent (page 3 of 3)

Adverse Event	ARV Agent(s)/Drug Class		Commonte	
	Switch from	Switch to	Comments	
Renal Effects Including proximal renal tubulopathy, elevated creatinine	TDF*	ABC ^b	Phosphate wasting as a consequence of TDF nephrotoxicity may lead to osteomalacia.	
	ATV/r, LPV/r	DTG, RAL, or NNRTI	cobi and DTG, and to a lesser extent RTV, RPV, and RAL, can increase SCr soon after treatment initiation because of inhibition of tubular secretion of creatinine. This effect does not affect glomerular filtration. However, assess for renal dysfunction, especially if SCr increases by >0.4 mg/dL.	
Stones Nephrolithiasis and cholelithiasis	ATV, ATV/r	DRV/r, INSTI, or NNRTI	Nephrolithiasis (a frequent complication of IDV) has been observed with ATV. Cholelithiasis is also reported with ATV.	

^a For patients with chronic active HBV infection, another agent active against HBV should be added to substitute for TDF.

^b ABC should be used only in patients known to be HLA-B*5701 negative.

^c TDF reduces ATV levels; therefore, unboosted ATV should not be co-administered with TDF. Long term data for unboosted ATV are unavailable.

Key to Abbreviations: ABC = abacavir; ART = antiretroviral therapy; ARV = antiretroviral; ATV = atazanavir; ATV/r = ritonavir-boosted atazanavir; BMD = bone mineral density; CNS = central nervous system; cobi = cobicistat; d4T = stavudine; ddI = didanosine; DRV/r = ritonavir-boosted darunavir; DTG = dolutegravir; EFV = efavirenz; ETR = etravirine; EVG = elvitegravir; FPV/r = ritonavir-boosted

Guidelines for use of antiretroviral agents in HIV-1-infected adults and adolescents, revised 5/1/14

Renal disease in the context of HIV

- HIV associated nephropathy (collapsing FSGS)
- IgA nephropathy
- Lupus-like glomerulonephritis
- Thrombotic microangiopathy (TTP/HUS)
- Membranous nephropathy
- Membranoproliferative GN
- Rhabdomyolysis with AKI (with statin use)
- Nephropathy assoc with concurrent infections (hep B,C)
- Acute interstitial nephritis
- Acute kidney injury (AKI) from prerenal azotemia or ATN
- Crystal induced nephropathy
- Renal failure and Fanconi's syndrome
- Infiltrative diseases (lymphoma or KS)
- Chronic kidney disease

Adapted from Balow KI 2005

PATIENT	Age/	Risk	Renal	RENAL		Time to	CURRENT	
Age/ Race/Sex	Risk Factor		Renal Manifestation	Renal Histology *	INITIAL C _{CT} †		Time to Severe Uremia	
						ml/min	wk	
				- 23				
28/B/F	Heroin		Nephrotic syn.	FSGS		90		
38/B/M	Heroin, homosexual		Nephrotic syn.	FSGS (A)	(1.4)		8-10	
27/B/M	Heroin		Nephrotic syn.	FSGS	75		16	
33/B/M		Heroin	Nephrotic syn.	FSGS (A)		90	12	
8	26/B/M	Homosexual	Nephrotic syn.	FSGS	(1.3)	16	Dead (RF)	
9	46/B/M	Haitian	Azotemia, proteinuria	Mesangial increase	50		Dead (cr, 3.5)	
10	36/B/M	Homosexual	Nephrotic syn.	FSGS (A)	(1.2)	8-10	Dead (RF)	
11	22/B/F	Haitian	Nephrotic syn.	FSGS	70	8	On dialysis	

Table 1. Clinical Data on 11 Patients with AIDS and Renal Disease.

Rao TK et al. N Engl J Med 1984;310:669-673.

HIV nephropathy/ HIV associated FSGS

- Classically, presents with nephrotic syndrome
- Typically normotensive
- Ultrasound with enlarged kidneys
- Historically-poor prognosis ARV therapy has changed the landscape
- Usually late manifestation (can occur throughout course of HIV)
- Presentation with well controlled HIV more subtle, may have mild proteinuria
- Marked predilection for individuals of African ancestry

Typical histopathologic findings in HIVAN

FSGS with segmental collapse

Tubular microcystic changes Ross JASN 2002; 13:2997

In situ hybridization of HIV mRNA

Ross M J , Klotman P E JASN 2002;13:2997-3004

©2002 by American Society of Nephrology

Pathogenesis of HIV AN

Many questions?

- If kidney is a reservoir for HIV, why don't more have this disorder
- What host factors are important in HIVAN MYH9? Apo L1? Others?
- Treatment?

APO L1 alleles G1 and G2 confer risk for HIVAN

Risk Allele	Stratum	Number Case/Control	1 vs. 0 Risk Allele		2 vs. 0 Risk Alleles		
			OR (CI)	Р	OR (CI)	Р	
HIV-associate	d collapsing	glomerulopathy (n	= 54) and hype	r-normal	controls (n 237)		
G1	No G2	27/180	1.9 (0.5, 8)	0.37	47.4 (11.9, 231.5)	4.9×10^{-11}	
G2	No G1	11/150	1.4 (0.2, 7.5)	0.70	14.4 (1.7, 116.3)	0.007	
G1/G2	G1/G2 ^b	26/113			44.9 (12.9, 192.1)	2.2×10^{-13}	
G1 or G2	All	54/237	1.8 (0.5, 6.8)	0.42	40.4 (13.7, 148.4)	4.10×10^{-18}	
African Ameri	can idiopath	ic FSGS cases (n =	217) and control	ols (n =)	383)		
G1	No G2	125/286	1.9 (1, 3.5)	0.05	23.2 (12, 46.7)	7.3 × 10 ⁻²⁹	
G2	No G1	56/234	1.0 (0.4, 2.3)	1.0	25.1 (8.8, 83.3)	7.8×10^{-13}	
G1/G2	G1/G2	82/186	20 <u>0</u> 20	-	16.7 (8.5, 34)	7.3×10^{-21}	
G1 or G2	All	217/383	1.4 (0.8-2.6)	0.26	20.6 (11.8-37)	6.7×10^{-38}	

Table 2. Independent effects of the APOL1 G1 and G2 risk alleles

The APOL1 risk alleles are referred to as follows: G1, S342G mutation; G2, 6 bp deletion (N388del:Y389del). Stratum refers t lacked the G2 allele or G1 allele). The strata do not add to the total due to overlap between strata. G1/G2 compound heter were determined by Fisher exact test. As shown, the data best fit a recessive mode of inheritance, with marginal evidence for

Kopp e al. JASN 2011; 22: 2129

ApolL1 and Trypanosomes

Current opinion in immunology

Patient and renal survival in HIVAN

Post F A et al. Clin Infect Dis. 2008;46:1282-1289

Clinical Infectious Diseases

Therapy for HIVAN

- Current era →HAART
 - Case reports of clinical and histological remission from therapy
- Prednisone if HAART does not improve renal function or deterioration is rapid
- Blockade of renin angiotensin aldosterone system
- Epidemiology suggests reduction in incidence of HIVAN but data lags

Relative proportion of patients on ARV

Adapted from Choi AI et al 2007 Clin Inf Dis 45:1633

What about HIV with CKD?

- Address underlying disorders
- Dose medications for reduced GFR
- Address HTN with goal <130/80 if there is proteinuria and preference for ACE I/ARB (if proteinuria)
- Avoid high protein diets
- Management of cardiovascular risk factors
 - hyperlipidemia
 - □ Glycemic control in diabetes
 - □tobacco use!!

- Assess and treat metabolic complications
 - 🗆 Anemia
 - Metabolic acidosis and hyperkalemia
 - Secondary hyperparathyroidism

ESKD in the HIV positive patient

- Hemodialysis
- Peritoneal dialysis
- Renal transplantation
- "Non selection"

Incidence and prevalence of ESKD from AIDS

Counts (in thousands)

Rate (in millions)

http://www.usrds.org/2010/pdf/v2_02.pdf

ESRD Medical Evidence report/MEDICAL Entitlement and or patient registration

Onlet Calorac disease	р.
Cerebrovascular disease, CVA, TIA*	q.
Peripheral vascular disease*	Б.
The second se	

e	Peripheral vascular disease
4.11	History of hupodaposion

Amputation g.

d.

m.

- Diabetes, currently on insulin h.
- Diabetes, on oral medications
- Diabetes, without medications
- Diabetic retinopathy k.
- Chronic obstructive pulmonary disease
 - Tobacco use (current smoker)

- Drug dependence* Inability to ambulate
- Inability to transfer 5.
- Needs assistance with daily activities 62 🖬 i
- Institutionalized u. 🗌
 - 1. Assisted Living
 - 2. Nursing Home
 - 3. Other Institution
 - Non-renal congenital abnormality
- None

×.

Care of patients with ESKD

- Lifestyle modifications
- Vaccination
- Infection prophylaxis
- Malignancy screening
- Appropriate dosing of ARV
- Anemia management
- Bone and mineral management

From Novak and Szczech ACKD 2010

Renal transplantation in recipient with HIV

Patient survival

Graft survival

Stock PG et al. N Engl J Med 2010;363:2004-2014.

HIV and transplantation requires close coordination of care

Potential antiretroviral/ immunosuppressive drug-drug interactions

- Protease inhibitors affect P450 cytochrome isoenzymes (CYP3A4) which affect metabolism of calcineurin inhibitors
- Nonnucleoside reverse transcriptors affect metabolism of immunosuppressant agents in more complex manner
- Increased risk of rejection but treatment may result in severe infections
- Transplant team must work closely with infectious disease team

Recommendations:

- Assess renal function and measure proteinuria in all patients at diagnosis of HIV and annually (more frequently with 1 risk factors for CKD)
- Consider referral for patients with eGFR<<60ml/min, proteinuria and/or hematuria</p>
- Consider a broad differential in assessing kidney disorders
- Dose medications according to eGFR to avoid toxicity AND inadequate treatment
- Attention to modifiable risk factors for CVD in setting of CKD.

Established or hypothesized role of

HIV infection or its treatment

- HIV-associated nephropathy (HIVAN)
- Antiretroviral nephrotoxicity
- Tenofovir (proximal tubulopathy)
- Indinavir (interstitial nephritis and crystal deposition)
- Other protease inhibitors?
- HIV-immune complex kidney disease
- IgA nephropathy
- *Hypothesized additive effect of HIV infection or its treatment*
- Diabetic nephropathy
- Unclear role of HIV infection or its treatment
- Noncollapsing focal segmental glomerulosclerosis
- Membranoproliferative glomerulonephritis, with or without hepatitis C virus
- Membranous nephropathy, with or without hepatitis B virus
- Arterionephrosclerosis

Mallipatu et al KI 2014

Other resources:

Guidelines, drug dosing

http://www.aidsinfo.nih.gov

Monograph on HIV and CKD from NKF:

http://www.kidney.org/professionals/tools

IDSA CKD in HIV guidelines

(2005 posted, update in 2014)

http://www.idsociety.org

CROI conference on retroviral and OI has web/podcasts of recent meetings

http://retroconference.org

